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Abstract

Three-dimensional thermo-elastic analysis of a functionally graded cylindrical panel with finite length and subjected
to nonuniform mechanical and steady-state thermal loads are carried out in this paper. Thermal and mechanical prop-
erties of the functionally graded material are assumed to be temperature independent and continuously vary in the
radial direction of the panel. Analytical solutions for the temperature and stress fields expressed in terms of trigonomet-
ric and power series for the simply supported boundary conditions are derived and graphically presented.
� 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

It is well known that many structural components, such as hollow cylinder, thin-walled shell, pipe, cylin-
drical panel, etc. undergo mechanical and/or thermal loads which may induce undesirable stresses and
deformation. How to reduce the aforementioned stresses and deformation becomes important for engineer-
ing applications, and extensive effects have been devoted to this field (Tanigawa, 1995). Functionally graded
materials (FGM) as a new kind of composites were initially designed as thermal barrier materials for
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aerospace structures, in which the volume fractions of different constituents of composite material vary
continuously from one side to another (Suresh and Mortensen, 1998). These novel nonhomogeneous mate-
rials have excellent thermo-mechanical properties to withstanding high temperature and have extensive
applications to important structures, such as aerospace, nuclear reactors and chemical plants, etc. The
use of functionally graded materials can eliminate and/or control thermal deformation of structural com-
ponents (Aboudi et al., 1994; Wetherhold and Wang, 1996).

Due to the nonhomogeneity of such a kind of novel composite materials and the mathematical difficulty,
it is difficult to obtain the analytical thermo-elastic solutions for the stress and temperature fields in func-
tionally graded structures. A widely used method is the so-called multi-layered method, in which each layer
are assumed to be homogeneous and continuous conditions between each layers are used to derive the final
solutions of the problem. Using the multi-layered method, Ootao and Tanigawa (1999, 2000) studied the
three-dimensional transient thermal stresses of functionally graded rectangular plates induced by partial
heating, and the three-dimensional transient piezo-thermo-elasticity of functionally graded rectangular
plate bonded to a piezoelectric plate. Two-dimensional unsteady thermo-elastic problems of functionally
graded infinite hollow cylinder and the deflection of functionally graded plate under transient thermal load-
ing are studied by Kim and Noda (2002a,b) on the basis of the multi-layered method and Green�s function
approach. Using the multi-layered method and through a novel limiting process, Liew et al. (2003) derived
the analytical solutions of thermal stress in functionally graded circular hollow cylinder in terms of the solu-
tions of homogeneous circular hollow cylinder. The multi-layered method is also employed by Shao (2005)
to derive the two-dimensional analytical solutions of thermal/mechanical stresses in functionally graded cir-
cular hollow cylinder with finite length.

On the other hand, perturbation method was employed by Obata and Noda (1994) to study the one-
dimensional steady-state thermal stresses in a functionally graded circular hollow cylinder and hollow
sphere, in which the effect of porosity on material properties is considered. Using finite element method,
Reddy and Chin (1998) studied the dynamic response of functionally graded cylinders and plates, in which
effect of thermo-mechanical coupling on the temperature and stress fields were considered for different ther-
mal loading conditions. Using finite difference method, Awaji and Sivakuman (2001) studied the one-
dimensional transient thermo-elasticity of functionally graded circular hollow cylinder.

Additionally, considering the simple models of material properties for FGM, one can obtain the
analytical solutions for the mechanical and/or thermo-mechanical problems of FGM structures. Jabbari
et al. (2002, 2003) assumed the material properties of FGM obey a power law of distribution of the
volume fraction of the constituents and obtained the analytical solutions of one- and two-dimensional
steady-state thermo-elastic stresses in functionally graded circular hollow cylinder. Using the same
assumption as Jabbari et al. (2002, 2003), Shao et al. (2004) obtained the analytical solutions of stress
fields in functionally graded circular hollow cylinder with finite length and under mechanical loading.
Based on the mathematical similarity of the axisymmetric bending and buckling problems of a circular
plate between the classical plate theory and Reddy�s third-order shear deformation plate theory, Ma
and Wang (2004) derived the analytical relations of the solutions of bending and buckling of circular
FGM plate based on various plate theories, respectively, and then obtained the analytical solutions of
bending and buckling of circular FGM plate. Ma and Wang (2003a,b) investigated the nonlinear bend-
ing and post-buckling behavior of functionally graded circular plate under thermal and mechanical
loadings.

Cylindrical panels are widely used in engineering structures. It is a little bit easy to obtain the analytical
solutions of the stress field in cylindrical panel with infinite length. However, it is difficult to derive the ana-
lytical solutions of the stress field in cylindrical panel with finite length due to the three-dimensional char-
acteristics. Using extended power series method, Huang and Tauchert (1991) derived the analytical
solutions of thermo-elastic stresses in cross-ply laminated cylindrical panels subjected to mechanical and
thermal loads. Ootao and Tanigawa (2002) studied the transient thermal stresses in an angle-ply laminated
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composite cylindrical panel with infinite length and subjected to nonuniform heat source in the circumfer-
ential direction.

In the present work, we would like to consider a simply supported functionally graded cylindrical panel
with finite length and subjected to nonuniform thermal/mechanical loads in the inner and outer surfaces of
the panel. The material properties of the FGM panel are assumed to be temperature independent, vary con-
tinuously in radial direction of the panel and obey a power law of distribution of the volume fraction of the
constituents. The extended power series method used by Huang and Tauchert (1991) will be employed to
solve such a three-dimensional thermo-elastic problem. The paper is arranged as follows: basic equations of
the problem including the thermo-elastic constitutive relations of FGM, equilibrium and heat conduction
equations and corresponding temperature and mechanical boundaries are formulated in Section 2. Analyt-
ical solutions for the three-dimensional steady-state temperature and stress fields in the functionally graded
cylindrical panel are derived in Sections 3 and 4, respectively. In Section 5, a mullite/molybdenum function-
ally graded cylindrical panel with finite length and subjected to nonaxisymmetric thermal and mechanical
loads is considered as an example, and the three-dimensional temperature and stress fields are graphically
presented. In Section 6, concluding remarks are presented.
2. Basic equations

A functionally graded cylindrical panel with finite length l, internal radius ra and external radius rb, as
shown in Fig. 1, is considered. Cylindrical coordinates r, h and z are used in analysis, where axis r is radially
outward from the center of the panel, coordinate h is in the circumference direction, and axis z is the length
direction and perpendicular to the r–h plane. The panel is simply supported at its four end edges and sub-
jected to nonuniform steady-state thermal loads Ta(h,z) on the inner surface, Tb(h,z) on the outer surface
and zero on the four end surfaces. The nonuniform internal pressure qa(h,z) and external pressure qb(h,z)
are applied to the inner and outer surfaces of the panel.

Generally, Poisson�s ratio l of materials varies in a very small range. For simplicity, we assume l to be a
constant for functionally graded materials. Moreover, we assume the Young�s modulus E, thermal expan-
sion coefficient a and thermal conductivity coefficient k of the FGM change continuously through the thick-
ness of the panel and obey the following power laws (Wang and Zou, 1997):
Fig. 1. Dimensions and loading conditions of functionally graded cylindrical panel with coordinate system.



Z.S. Shao, T.J. Wang / International Journal of Solids and Structures 43 (2006) 3856–3874 3859
EðrÞ ¼ E0

r
rb

� �m1

; ð1aÞ

aðrÞ ¼ a0

r
rb

� �m2

; ð1bÞ

kðrÞ ¼ k0
r
rb

� �m3

; ð1cÞ
where E0, a0, k0, m1, m2 and m3 are material constants. If m1 = m2 = m3 = 0, the functionally graded panel
reduces to a homogeneous panel.

In the cylindrical coordinate system, thermo-elastic constitutive relations of functionally graded materi-
als are as follows:
rr ¼
EðrÞ

ð1þ lÞð1� 2lÞ ð1� lÞer þ leh þ lez½ � � aðrÞEðrÞ
1� 2l

T ðr; h; zÞ; ð2aÞ
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E rð Þ
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E rð Þ

2ð1þ lÞ crh; ð2fÞ
where T(r,h,z) is temperature filed and the components of strain can be calculated from the following geo-
metric relations:
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with u, v and w being the displacements in r, h and z directions, respectively. The stress components should
satisfy the following equilibrium equations:
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If nonuniform steady-state thermal loads Ta(h,z) and Tb(h,z) are applied to the inner and outer surfaces of
the panel, respectively, then three-dimensional heat conduction obeys the following equation:
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For the present problem, the temperature boundary conditions can be expressed as
T ðr; 0; zÞ ¼ T ðr; h0; zÞ ¼ 0; ð6aÞ

T ðr; h; 0Þ ¼ T ðr; h; lÞ ¼ 0; ð6bÞ

T ðra; h; zÞ ¼ T aðh; zÞ; ð6cÞ

T ðrb; h; zÞ ¼ T bðh; zÞ ð6dÞ
and the boundary conditions of displacements and stresses can be expressed as
uðr; 0; zÞ ¼ wðr; 0; zÞ ¼ 0;

rhðr; 0; zÞ ¼ srhðr; 0; zÞ ¼ shzðr; 0; zÞ ¼ 0;

)
ð7aÞ

uðr; h0; zÞ ¼ wðr; h0; zÞ ¼ 0;

rhðr; h0; zÞ ¼ srhðr; h0; zÞ ¼ shzðr; h0; zÞ ¼ 0;

)
ð7bÞ

uðr; h; 0Þ ¼ vðr; h; 0Þ ¼ 0;

rzðr; h; 0Þ ¼ srzðr; h; 0Þ ¼ shzðr; h; 0Þ ¼ 0;

)
ð7cÞ

uðr; h; lÞ ¼ vðr; h; lÞ ¼ 0;

rzðr; h; lÞ ¼ srzðr; h; lÞ ¼ shzðr; h; lÞ ¼ 0;

)
ð7dÞ

rrðra; h; zÞ ¼ qaðh; zÞ; srzðra; h; zÞ ¼ srhðra; h; zÞ ¼ 0; ð7eÞ

rrðrb; h; zÞ ¼ qbðh; zÞ; srzðrb; h; zÞ ¼ srhðrb; h; zÞ ¼ 0. ð7fÞ
Now a three-dimensional boundary problem has been formulated. To simplify the solving process, we
introduce the following dimensionless variables:
R ¼ r
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rb
;
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;
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; Hb ¼
T b
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;
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a0T 0rb
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;
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a0T 0
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a0T 0
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a0T 0
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czh

a0T 0

;
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a0E0T 0
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rz

a0E0T 0

;

Rrh ¼
srh

a0E0T 0

; Rrz ¼
srz

a0E0T 0

; Rhz ¼
shz

a0E0T 0

;

Qa ¼
qa

a0E0T 0

; Qb ¼
qb

a0E0T 0

;

where T0 is a reference value of temperature. Then, the dimensionless equilibrium and heat conduction
equations can be expressed as
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The temperature boundary conditions (6) can be rewritten as
HðR; 0; ZÞ ¼ HðR; h0; ZÞ ¼ 0; ð10aÞ
HðR; h; 0Þ ¼ HðR; h; LÞ ¼ 0; ð10bÞ
HðRa; h; ZÞ ¼ Haðh; ZÞ; ð10cÞ
HðRb; h; ZÞ ¼ Hbðh; ZÞ. ð10dÞ
The displacement and stress boundary conditions (7) can be rewritten as
UðR; 0; ZÞ ¼ W ðR; 0; ZÞ ¼ 0;

RhðR; 0; ZÞ ¼ RrhðR; 0; ZÞ ¼ RhzðR; 0; ZÞ ¼ 0;

�
ð11aÞ

UðR; h0; ZÞ ¼ W ðR; h0; ZÞ ¼ 0;

RhðR; h0;ZÞ ¼ RrhðR; h0; ZÞ ¼ RhzðR; h0; ZÞ ¼ 0;

�
ð11bÞ

UðR; h; 0Þ ¼ V ðR; h; 0Þ ¼ 0;

RzðR; h; 0Þ ¼ RrzðR; h; 0Þ ¼ RhzðR; h; 0Þ ¼ 0;

�
ð11cÞ

UðR; h; LÞ ¼ V ðR; h; LÞ ¼ 0;

RzðR; h; LÞ ¼ RrzðR; h; LÞ ¼ RhzðR; h; LÞ ¼ 0;

�
ð11dÞ

RrðRa; h; ZÞ ¼ Qaðh; ZÞ; RrzðRa; h; ZÞ ¼ RrhðRa; h; ZÞ ¼ 0; ð11eÞ
RrðRb; h; zÞ ¼ Qbðh; ZÞ; RrzðRb; h; ZÞ ¼ RrhðRb; h; ZÞ ¼ 0. ð11fÞ
In what follows, the extended power series method used by Huang and Tauchert (1991) will be employed to
derive the analytical solutions of the steady-state temperature and stress fields for the three-dimensional
problem formulated above.
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3. Analytical solution for the three-dimensional steady-state temperature field

From Eq. (1c) one can obtain the dimensionless thermal conductivity coefficient j, then substituting into
Eq. (9) yields
o2

oR2
þ m3 þ 1ð Þ 1

R
o

oR
þ 1

R2

o2

oh2
þ o2

oZ2

� �
H ¼ 0. ð12Þ
Using Navier trigonometric series, the solution of Eq. (12) satisfying the temperature boundary conditions
(10a) and (10b) can be assumed as
HðR; h; ZÞ ¼
X1
n¼0

X1
m¼0

HnmðRÞ sinðbhÞ sinðaZÞ; ð13Þ
where Hnm(R) are unknown functions, a = np/L and b = mp/h0.
Substituting Eq. (13) into Eqs. (12), (10c) and (10d), respectively, we have
d2

dR2
þ m3 þ 1ð Þ 1

R
d

dR
� b2

R2
þ a2

� �� �
HnmðRÞ ¼ 0 ð14Þ
and
HðRaÞ ¼ Hanm; ð15aÞ
HðRbÞ ¼ Hbnm; ð15bÞ
where
Hanm ¼
4

h0L

Z L

0

Z h0

0

Haðh; ZÞ sinðbhÞ sinðaZÞdhdZ;

Hbnm ¼
4

h0L

Z L

0

Z h0

0

Hbðh; ZÞ sinðbhÞ sinðaZÞdhdZ.
It is clear that the point R = 0 is a regular singular point of Eq. (14). Such that Frobenius method
(Myint-U, 1978) can be employed to solve the ordinary differential Eq. (14).

It is assumed that the solution of Eq. (14) has the following form expressed in terms of the extended
power series:
HnmðRÞ ¼
X1
k¼0

AkRgþk; ð16Þ
where Ak are coefficients to be determined and g is an exponent.
Substituting Eq. (16) into Eq. (14) and letting the coefficient of Rg+k equal to zero, one then obtains the

following recurrence relation:
Ak ðgþ kÞ2 þ m3ðgþ kÞ � b2
h i

¼ Ak�2a2; k ¼ 0; 1; 2; . . . ; ð17Þ
where A�1 = 0 and A�2 = 0. Since A0 5 0, we can obtain the indicial equation of Eq. (14) for k = 0,
g2 þ m3g� b2 ¼ 0. ð18Þ

From Eq. (18) one can obtain the solutions of g. To simplify analysis, we consider the case of distinctive
real roots of Eq. (18). Two roots of g are denoted to g1 and g2. Such that we obtain the following solution
of Hnm(R):
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HnmðRÞ ¼
X1
k¼0

b1Ak1Rg1þk þ b2Ak2Rg2þk
� �

; ð19Þ
where b1 and b2 are unknown constants and can be determined from Eqs. (15a) and (15b), Ak1 and Ak2 are
constants corresponding to g1 and g2, respectively. Without losing generality, we assume A01 = 1 and
A02 = 1 for k = 0. For k P 1, Ak1 and Ak2 can be obtained from the recurrence relation (17).

Substituting Eq. (19) into Eq. (13), one then obtains the analytical solution for the three-dimensional
steady-state temperature field in the functionally graded cylindrical panel with finite length. In what
follows, we will derive the analytical solutions for the stress field in the functionally graded cylindrical
panel.
4. Analytical solutions for the stress field

Using Navier trigonometric series, solutions of Eqs. (8) satisfying the boundary conditions (11a)–(11d)
can be assumed as
UðR; h; ZÞ ¼
X1
n¼0

X1
m¼0

U nmðRÞ sinðbhÞ sinðaZÞ; ð20aÞ

V ðR; h; ZÞ ¼
X1
n¼0

X1
m¼0

V nmðRÞ cosðbhÞ sinðaZÞ; ð20bÞ

W ðR; h; ZÞ ¼
X1
n¼0

X1
m¼0

W nmðRÞ sinðbhÞ cosðaZÞ. ð20cÞ
Substituting Eqs. (13) and (20) into Eqs. (8) and boundary conditions (11e) and (11f), we have
d2
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and
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ð1� lÞ dUnmðRaÞ
dR

� lb
R

V nmðRaÞ þ
l
R

U nmðRaÞ � laW nmðRaÞ � ð1þ lÞXðRaÞHnmðRaÞ ¼ Qanm; ð22aÞ

b
R

U nmðRaÞ þ
dV nmðRaÞ

dR
� V nmðRaÞ

R
¼ 0; ð22bÞ

dW nmðRaÞ
dR

þ aUnmðRaÞ ¼ 0; ð22cÞ

1� lð Þ dUnmðRbÞ
dR

� lb
R

V nmðRbÞ þ
l
R

U nmðRbÞ � laW nm � 1þ lð ÞXðRbÞ �HnmðRbÞ ¼ Qbnm; ð22dÞ

b
R

U nmðRbÞ þ
dV nmðRbÞ

dR
� V nmðRbÞ

R
¼ 0; ð22eÞ

dW nmðRbÞ
dR

þ aUnmðRbÞ ¼ 0; ð22fÞ
where
Qanm ¼
ð1þ lÞð1� 2lÞ

Y
4

h0L

Z L

0

Z h0

0

Qaðh;ZÞ sinðbhÞ sinðaZÞdhdZ;

Qbnm ¼
ð1þ lÞð1� 2lÞ

Y
4

h0L

Z L

0

Z h0

0

Qbðh;ZÞ sinðbhÞ sinðaZÞdhdZ.
It is clear that the point R = 0 is a regular singular point of Eqs. (21). Similar to Section 3, Frobenius meth-
od (Myint-U, 1978) can be employed to derive the solutions of Eqs. (21). It is assumed that the homoge-
neous solutions of Eqs. (21) have the following forms expressed in terms of the extended power series:
U g
nmðRÞ ¼

X1
k¼0

BkRsþk; ð23aÞ

V g
nmðRÞ ¼

X1
k¼0

CkRsþk; ð23bÞ

W g
nmðRÞ ¼

X1
k¼0

DkRsþk; ð23cÞ
where s is exponent, Bk, Ck, and Dk are coefficients to be determined. Substituting Eqs. (23) into Eqs. (21)
and letting the coefficients of Rs + k equal to zero, one then obtains the following recurrence equations:
L1Bk þM1Ck ¼ P 1Bk�2 þ R1Dk�1; k ¼ 0; 1; 2; . . . ; ð24aÞ
L2Bk þM2Ck ¼ Q2Ck�2 þ R2Dk�1; k ¼ 0; 1; 2; . . . ; ð24bÞ
N 3Dk ¼ P 3Bk�1 þ Q3Ck�1 þ R3Dk�2; k ¼ 0; 1; 2; . . . ; ð24cÞ
where
L1 ¼ ðsþ kÞ2 þ m1ðsþ kÞ � 2� 2l
1� 2l

b2 þ m1l
1� l

� 1;

L2 ¼
b

1� 2l
ðsþ kÞ þ m1 þ

3� 4l
1� 2l

� �
b;

M1 ¼ �
b

2� 2l
ðsþ kÞ � ð2m1 þ 4Þl� 3

2� 2l
;
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M2 ¼ ðsþ kÞ2 þ m1ðsþ kÞ � ðm1 þ 1Þ � 2� 2l
1� 2l

b2;

N 3 ¼ ðsþ kÞ2 þ m1ðsþ kÞ � b2;

P 1 ¼
1� 2l
2� 2l

a2;

P 3 ¼ �
a

1� 2l
ðsþ kÞ � m1a;

Q2 ¼ a2;

Q3 ¼
ab

1� 2l
;

R1 ¼
a

2� 2l
ðsþ k � 1Þ þ m1la

1� l
;

R2 ¼
ab

1� 2l
;

R3 ¼
2� 2l
1� 2l

a2.
Since B0 5 0, C0 5 0 and D0 5 0, we can obtain the indicial equations of Eqs. (21) for k = 0
s4 þ As3 þ Bs2 þ Csþ D ¼ 0; ð25aÞ
s2 þ m1s� b2 ¼ 0; ð25bÞ
where
A ¼ 2m1;

B ¼ m2
1 �

1� 2l
1� l

m1 � 2b2 � 2;

C ¼ 2l� 1

1� l
m2

1 � ð2b2 þ 2Þm1;

D ¼ 1� 2l
2� 2l

b2 � m1l
1� l

� 1

� �
2� 2l
1� 2l

b2 þ m1 þ 1

� �
þ ð2m1 þ 4Þl� 3

2� 2l
m1 þ

3� 4l
1� 2l

� �
b2.
From Eqs. (25) one can obtain the solutions of s. To simplify analysis, we consider the case of distinctive
real roots of Eqs. (25). The roots of Eq. (25a) are denoted as s1, s2, s3 and s4. The roots of Eq. (25b) are
denoted as s5 and s6. Such that the homogeneous solutions of Eqs. (21) can be expressed as
Ug
nm; V g

nm; W g
nm

	 

¼
X6

j¼1

X1
k¼0

fj Bjk; Cjk; Djk

	 

Rsjþk; ð26Þ
where fj are unknown constants which can be determined from Eqs. (22). {Bjk, Cjk, Djk} are eigenvectors
corresponding to eigenvalue sj.

Without losing the generality, in the case of k = 0, we assume,
Bj0 ¼ 1; Cj0 ¼ H ; Dj0 ¼ 0 ðj ¼ 1; 2; 3; 4Þ;
Bj0 ¼ 0; Cj0 ¼ 0; Dj0 ¼ 1 ðj ¼ 5; 6Þ;
where H is a derived quantity which can be determined from Eqs. (24a) and (24b), i.e.



Fig. 2.
Z = 1.
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H ¼
ð2� 2lÞðs2

j þ m1sjÞ þ 2ðm1 þ 1Þl� ð1� 2lÞb2 � 2

bsj þ ð2m1 þ 4Þlb� 3b
.

For k P 1, the eigenvectors {Bjk, Cjk, Djk} can be derived from the recurrence relations (24).
In what follows, the method used by Ootao and Tanigawa (2002) is employed to derive the special solu-

tions of Eqs. (21). Considering Eq. (19), the special solutions of Eqs. (21) can be assumed as
U p
nmðRÞ ¼

X1
k¼0

Bk1Rg1þkþm2þ1 þ Bk2Rg2þkþm2þ1
� �

; ð27aÞ

V p
nmðRÞ ¼

X1
k¼0

Ck1Rg1þkþm2þ1 þ Ck2Rg2þkþm2þ1
� �

; ð27bÞ

W p
nmðRÞ ¼

X1
k¼0

Dk1Rg1þkþm2þ1 þ Dk2Rg2þkþm2þ1
� �

. ð27cÞ
Substituting Eqs. (27) into Eqs. (21) and comparing the coefficients of Rg1þkþm2�1 and Rg2þkþm2�1, respec-
tively, we obtain
Distribution of dimensionless temperature: (a) internal surface of the panel, i.e. R = 0.8, (b) section h = p/4 and (c) section
5.



Fig. 3. Distributions of dimensionless radial stress: (a) at section: R = 0.8, (b) at section h = p/4 and (c) at section Z = 3/2.
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ðg1 þ k þ m2 þ 1Þðg1 þ k þ m2 þ m1 þ 1Þ � 1� 2l
2� 2l

b2 þ lm1

1� l
� 1

� �
Bk1

� 1� 2l
2� 2l

a2Bk�2;1 � b
1

2� 2l
ðg1 þ k þ m2 þ 1Þ þ ð2m1 þ 4Þl� 3

2� 2l

� �
Ck1

� a
g1 þ k þ m2

2� 2l
þ m1l

1� l

� �
Dk�1;1 �

1þ l
1� l

a0b1 g1 þ k þ m2ð ÞAk1 þ m1Ak�1;1½ � ¼ 0; ð28aÞ

b
1

1� 2l
ðg1 þ k þ m2 þ 1Þ þ m1 þ

3� 4l
1� 2l

� �
Bk1 � a2Ck�2;1

þ ðg1 þ k þ m2 þ 1Þðg1 þ k þ m2 þ m1 þ 1Þ � 1� 2l
2� 2l

b2 � m1 � 1

� �
Ck1

� ab
1� 2l

Dk�1;1 �
2þ 2l
1� 2l

ba0b1Ak1 ¼ 0; ð28bÞ

a
1

1� 2l
ðg1 þ k þ m2Þ þ m1 þ

1

1� 2l

� �
Bk�1;1

� ab
1� 2l

Ck�1;1 þ ðg1 þ k þ m2 þ 1Þðg1 þ k þ m2 þ m1 þ 1Þ � b2
� �

Dk1

� 2� 2l
1� 2l

a2Dk�2;1 �
2þ 2l
1� 2l

aa0b1Ak�1;1 ¼ 0 ð28cÞ



Fig. 4. Distribution of dimensionless circumferential stress Rh: (a) section R = 0.9, (b) section h = p/4 and (c) section Z = 1.5.
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and
ðg2 þ k þ m2 þ 1Þðg2 þ k þ m2 þ m1 þ 1Þ � 1� 2l
2� 2l

b2 þ lm1

1� l
� 1

� �
Bk2

� 1� 2l
2� 2l

a2Bk�2;2 � b
1

2� 2l
ðg2 þ k þ m2 þ 1Þ þ ð2m1 þ 4Þl� 3

2� 2l

� �
Ck2

� a
g2 þ k þ m2

2� 2l
þ m1l

1� l

� �
Dk�1;2 �

1þ l
1� l

a0b2 g1 þ k þ m2ð ÞAk2 þ m1Ak�1;2½ � ¼ 0; ð29aÞ

b
1

1� 2l
ðg2 þ k þ m2 þ 1Þ þ m1 þ

3� 4l
1� 2l

� �
Bk2 � a2Ck�2;2

þ ðg2 þ k þ m2 þ 1Þðg2 þ k þ m2 þ m1 þ 1Þ � 1� 2l
2� 2l

b2 � m1 � 1

� �
Ck2

� ab
1� 2l

Dk�1;2 �
2þ 2l
1� 2l

ba0b2Ak2 ¼ 0; ð29bÞ



Fig. 5. Distribution of dimensionless axial stress Rz: (a) section R = 0.9, (b) section h = p/4 and (c) section Z = 1.5.
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a
1

1� 2l
ðg2 þ k þ m2Þ þ m1 þ

1

1� 2l

� �
Bk�1;2 �

ab
1� 2l

Ck�1;2

þ ðg2 þ k þ m2 þ 1Þðg2 þ k þ m2 þ m1 þ 1Þ � b2
� �

Dk2 �
2� 2l
1� 2l

a2Dk�2;2

� 2þ 2l
1� 2l

aa0b2Ak�1;2 ¼ 0; ð29cÞ
where
A�2;1 ¼ A�1;1 ¼ 0; A�2;2 ¼ A�1;2 ¼ 0;

B�2;1 ¼ B�1;1 ¼ 0; B�2;2 ¼ B�1;2 ¼ 0;

C�2;1 ¼ C�1;1 ¼ 0; C�2;2 ¼ C�1;2 ¼ 0;

D�2;1 ¼ D�1;1 ¼ 0; D�2;2 ¼ D�1;2 ¼ 0.
Letting k = 0, we can obtain the coefficients B01, B02, C01, C02, D01 and D02 from Eqs. (28) and (29),
respectively. For k P 1, one can derive the coefficients Bk1, Bk2, Ck1, Ck2, Dk1 and Dk2 expressed with
B01, B02, C01, C02, D01 and D02 from the above recurrence Eqs. (28) and (29). From Eqs. (26) and (27),
we obtain the solutions of Eqs. (21)



Fig. 6. Distribution of dimensionless shear stress Rrh: (a) section R = 0.9, (b) section h = p/4 and (c) section Z = 1.5.
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U nmðRÞ ¼ Ug
nmðRÞ þ U p

nmðRÞ; ð30aÞ
V nmðRÞ ¼ V g

nmðRÞ þ V p
nmðRÞ; ð30bÞ

W nmðRÞ ¼ W g
nmðRÞ þ W p

nmðRÞ; ð30cÞ
Substituting Eqs. (30) into Eqs. (20), we then obtain the analytical solutions of the displacements in the
functionally graded cylindrical panel, i.e.
UðR; h; ZÞ ¼
X1
n¼0

X1
m¼0

Ug
nmðRÞ þ U p

nmðRÞ
� �

sinðbhÞ sinðaZÞ; ð31aÞ

V ðR; h; ZÞ ¼
X1
n¼0

X1
m¼0

V g
nmðRÞ þ V p

nmðRÞ
� �

cosðbhÞ sinðaZÞ; ð31bÞ

W ðR; h; ZÞ ¼
X1
n¼0

X1
m¼0

W g
nmðRÞ þ W p

nmðRÞ
� �

sinðbhÞ cosðaZÞ. ð31cÞ
Moreover, substituting Eqs. (31) into Eqs. (3) and then into Eqs. (2), we then obtain the analytical solutions
of the thermo-elastic stress fields in the functionally graded cylindrical panel, i.e.



Fig. 7. Distribution of dimensionless shear stress Rrz: (a) section R = 0.9, (b) section h = p/4 and (c) section Z = 1.5.
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Rr ¼
E Rð Þ

ð1þ lÞð1� 2lÞ
X1
n¼0

X1
m¼0

ð1� lÞ d

dR
þ l

R

� �
U g

nmðRÞ þ Up
nmðRÞ

� �


� bl
R

V g
nmðRÞ þ V p

nmðRÞ
� �

þ al W g
nmðRÞ þ W p

nmðRÞ
� �

� ð1þ lÞXðRÞHnm

�
sinðbhÞ sinðaZÞ; ð32aÞ

Rh ¼
E Rð Þ

ð1þ lÞð1� 2lÞ
X1
n¼0

X1
m¼0

l
d

dR
þ 1� l

R

� �
U g

nmðRÞ þ U p
nmðRÞ

� �


�ð1� lÞb
R

V g
nmðRÞ þ V p

nmðRÞ
� �

þ al W g
nmðRÞ þ W p

nmðRÞ
� �

� ð1þ lÞXðRÞHnm

�
sinðbhÞ sinðaZÞ;

ð32bÞ

Rz ¼
E Rð Þ

ð1þ lÞð1� 2lÞ
X1
n¼0

X1
m¼0

l
d

dR
þ l

R

� �
Ug

nmðRÞ þ U p
nmðRÞ

� �


� bl
R

V g
nmðRÞ þ V p

nmðRÞ
� �

þ að1� lÞ W g
nmðRÞ þ W p

nmðRÞ
� �

� ð1þ lÞXðRÞHnm

�
sinðbhÞ sinðaZÞ;

ð32cÞ



Fig. 8. Distribution of dimensionless shear stress Rhz: (a) section R = 0.9, (b) section h = p/4 and (c) section Z = 1.5.
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Rrh ¼
E Rð Þ

2ð1þ lÞ
X1
n¼0

X1
m¼0

b
R

U g
nmðRÞ þ Up

nmðRÞ
� �

þ



d

dR
� 1

R

� �
V g

nmðRÞ þ V p
nmðRÞ

� ��
cosðbhÞ sinðaZÞ; ð32dÞ

Rrz ¼
E Rð Þ

2ð1þ lÞ
X1
n¼0

X1
m¼0

a U g
nmðRÞ þ Up

nmðRÞ
� �

þ d

dR
V g

nmðRÞ þ V p
nmðRÞ

� �
 �
sinðbhÞ cosðaZÞ; ð32eÞ

Rhz ¼
E Rð Þ

2ð1þ lÞ
X1
n¼0

X1
m¼0

a V g
nmðRÞ þ V p

nmðRÞ
� �

þ b
R

V g
nmðRÞ þ V p

nmðRÞ
� �
 �

cosðbhÞ cosðaZÞ. ð32fÞ
As an example, a mullite/molybdenum functionally graded cylindrical panel with finite length and sub-
jected to nonaxisymmetric thermal and mechanical loads will be considered in what follows, and the three-
dimensional solutions of temperature and stress fields will be graphically expressed.
5. Numerical results and discussion

We consider a molybdenum/mullite functionally graded cylindrical panel with the geometric parameters
Ra = 0.8, Rb = 1.0, L = 6.0 and h0 = p/3, as shown in Fig. 1. Outer surface of the panel is pure molybde-
num. Inner surface of the panel is the composite of molybdenum/mullite. Both molybdenum and mullite
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vary continuously from the outer to the inner surfaces of the panel. Such that Young�s modulus E, thermal
expansion coefficient a and thermal conductivity coefficient k of the panel vary continuously through the
thickness of the panel. E0, a0, k0 and l of molybdenum taken from Awaji and Sivakuman (2001) are
330 GPa, 4.9 · 10�6 K�1, 138 W(mK)�1 and 0.3, respectively. Without losing the generality, material gra-
dient constants of the molybdenum/mullite functionally graded material are assumed as m1 = m2 = 1.5 and
m3 = 2.

As an example, the following nonaxisymmetric temperature and mechanical loads applied to the inner
and outer surfaces of the panel are considered.
Ha h; Zð Þ ¼ 1

4
1� cos 12hð Þ½ � 1� cos

2p
3

Z
� �� �

at Ra ¼ 0.8;

Hb h; Zð Þ ¼ 0 at Rb ¼ 1.0;

Qa h; Zð Þ ¼ 0.3 sin 3hð Þ sin
p
6

Z
� �

at Ra ¼ 0.8;

Qb h; Zð Þ ¼ 0 at Rb ¼ 1.0.
Fig. 2(a)–(c) shows the numerical results of the dimensionless temperature distribution in the function-
ally graded cylindrical panel. Due to the nonhomogeneity of FGM, the temperature decreases nonlinearly
in the radial direction. Near the inner surface of the panel, temperature decreases more quickly than that
near the outer surface.

Figs. 3–5 show the numerical results of dimensionless normal stress distribution in the radial, circumfer-
ential, and axial directions of the functionally graded cylindrical panel, respectively. One can see the non-
uniform distributions of the stresses in the panel. It is seen that the axial stress is larger than the radial stress
and is smaller than the circumferential stress. The maximum intensity of the axial stress is about two times
of the radial stress and is about one third of the circumferential stress. The radial stress is negative through
the whole thickness of the cylindrical panel. The axial and circumferential stresses are negative on the sec-
tions near the inner surface and positive on the sections near the outer surface.

Figs. 6–8 show the numerical results of dimensionless shear stress distribution in the functionally graded
cylindrical panel, respectively. The shear stress Rrh is the largest one among the shear stresses. Clearly, mag-
nitude of the shear stress Rrz is almost equal to that of the shear stress Rhz. The maximum intensities of
shear stresses Rrz and Rhz are about half of the shear stress Rrh. Distribution of shear stresses in the axial
direction is much more complex than that in the other two directions.

Effects of material gradient constants m1, m2 and m3 on the temperature and stress fields in a functionally
graded hollow cylinder have been discussed by Jabbari et al. (2002, 2003). Here, one can assume different
values of m1, m2 and m3 to discuss the effects of material gradient constants on the temperature and stress
fields in the functionally graded panel considered above. For the sake of brevity, discussions on the effects
of m1, m2 and m3 are omitted.
6. Conclusions

Analytical solutions of the three-dimensional temperature and thermo-elastic stress fields in the func-
tionally graded cylindrical panel with finite length are derived in the present paper. The panel is subjected
to nonuniform thermal and mechanical loads on the inner and outer surfaces. As an example, the temper-
ature and stress fields in molybdenum/mullite functionally graded cylindrical panel are presented
graphically.

Advantage of the present method is its applicability to any material model suggested for functionally
graded materials, and the continuous variation of material properties can be included in the solutions. It
should be emphasized that the trigonometric series used in this paper are only suitable for the present ther-
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mal and mechanical boundary conditions assumed in the paper. For other boundary conditions, one should
choose other suitable forms of the trigonometric series.
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